2012 Biannual Recertification WXJC Nighttime Facility Birmingham, Alabama 09-17-2012

Radio Station WXJC, Birmingham operates at 50KW nominal day, 1KW nominal night. The night pattern is licensed pursuant to the moment method modeling provisions of 47 C.F.R. §73.151(c). The license for the modeled nighttime facilities was granted on September 17, 2010.

The sampling system consists of 5 identical sample loops mounted 37.277 meters above the base insulator. Each sample line runs from the loop, through a parallel-resonant isocoil, and finally, through a buried line into the transmitter building. As per standard engineering practice and the Rules, the following measurements were taken from the input connectors at the back of the Potomac Instruments 1901 antenna monitor to (and through) the connected sample loops.

An Agilent E5061 analyzer was used on 09-13 and 09-14-2012 to obtain these values:

	Tower 1	Tower 2	Tower 3	Tower 4	Tower 5	Units
R at 850 KHz	6.8	6.76	6.93	6.83	6.89	Ohms
X at 850 KHz	-35.53	-35.4	-36.02	-35.43	-36.22	Ohms
Z at 850 KHz	36.174865584	36.039667035	36.680584783	36.08231977	36.86950637	Ohms
Mean Z at 850	36.369388708					Ohms
Deviation	-0.194523125	-0.329721673	0.3111960743	-0.287068938	0.500117662	Ohms
Low 0 Freq	433.355	435.56	433.355	433.356	435.559	KHz
High 0 Freq	908.721	908.721	908.721	908.721	910.925	KHz
Low (-45) Freq	817.8489	817.8489	817.8489	817.8489	819.8325	KHz
R @ -45	8.44	8.42	8.36	8.35	8.19	Ohms
X @ -45	49.38	49.32	49.6	49.38	48.65	Ohms
Calculated Z	50.096087672	50.033576726	50.299598408	50.081003385	49.334557868	Ohms
High (+45) Freq	999.5931	999.5931	999.5931	999.5931	1002.0175	KHz
R @ +45	9.16	9.1	9.28	9.09	9.26	Ohms
X @ +45	49.92	49.63	50.58	49.82	50.65	Ohms
Calculated Z	50.753443233	50.457377062	51.424262756	50.64247723	51.489514467	Ohms
Characteristic Z	50.424765452	50.245476894	50.861930582	50.361740307	50.412036167	Ohms

Shaded items are calculated; the unshaded values are those taken by measurement. All measurements were made at the sample line connection points to the Potomac Instruments 1901 antenna monitor in the transmitter building. The cells labeled "Z at 850 Khz" are the measured impedances at the operating frequency. The "Deviation" cells are the calculated deviation from the mean.

The second group of measurements and calculations (the remainder of the spreadsheet) demonstrate that the characteristic impedances of each sample line are in compliance with the Rules. Using the Agilent analyzer, we first determined the zero-impedance frequencies of each line, with the sample loops attached. (As expected, the two zero-ohm frequencies are lower than measured in 2010, because this time, the loops were in the circuit; the 2010 measurements were open-circuited at the tower end).

We chose the "High 0 Freq(uency)" as being the closest to the carrier frequency (850 KHz), then derived the + and - 45 degree frequencies from that (the "Low (-45) Freq" and "High (+45) Freq" values). The final row, showing the Characteristic Impedance, was calculated with the standard formula,

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2})^{1/2}$$

We thus conclude that the WXJC sampling systems meets the requirements of the Rules.

The final step was to check the field strength at several sample points on various radials, as detailed on the last page. The 95 and 195 degree radials are the maxima ("lobes") and the remainder are minima ("nulls").

Two comments about the field strength readings: the measurements taken in 2010 were done during a relatively dry period. These most recent measurements were done after weeks of heavy rain (including several days of deluge from Tropical Storm Isaac). Also, the 14.5 kilometer distance on the 336 radial, and the 9.40 kilometer distance on the 299 radial, suffered from severe man made interference.

	Dist,	Nearest Address,					
°T	KM	Zipcode	N Lat	W Long	mV	Date	Time
22	3.11	651 Carson Road, 35217	33 39 01	86 44 04	58	09/12/12	11:46 AM
22	4.70	5424 Red Hollow Rd, 35215	33 39 49	86 43 40	34	09/12/12	11:39 AM
22	9.53	100' N of Turkey Creek WTP	33 42 13	86 42 28	3.8	09/12/12	11:18 AM
26	3.97	5221 Red Hollow Rd, 35215	33 29 23	86 43 40	33	09/12/12	11:42 AM
26	5.79	5674 Red Hollow Rd, 35215	33 40 16	86 43 10	20	09/12/12	11:34 AM
26	8.91	≈.3 mi S of Turkey Creek WTP	33 41 47	86 42 16	6.4	09/12/12	11:22 AM
50	3.48	1326 Sunhill Rd NW, 35215	33 38 41	86 43 07	4	09/12/12	10:52 AM
50	5.10	691 26th Ave NW 35215	33 39 14	86 42 17	3.2	09/12/12	10:58 AM
50	8.86	3192 Cobblestone Dr, 35215	33 40 31	86 40 24	1.5	09/12/12	11:07 AM
95	3.88	721 Carson Road, 35215	33 37 18	86 42 19	36	09/12/12	12:28 PM
95	5.46	1305 Huffman Rd, 35215	33 37 13	86 41 18	24	09/12/12	12:33 PM
95	7.06	1366 Springville Rd, 35215	33 37 07	86 40 16	15	09/12/12	12:40 PM
139	3.77	505 Lawson Rd, 35217	33 35 56	86 43 13	5.2	09/12/12	12:54 PM
139	4.76	59 Roebuck Drive, 35215	33 35 32	86 42 48	3.0	09/12/12	01:01 PM
139	5.87	9059 Parkway East, 35206	33 35 05	86 42 19	1.7	09/12/12	01:07 PM
195	3.44	2487 Valley View Dr, 35217	33 35 40	86 45 24	90	09/12/12	10:28 AM
195	4.71	1499 Bethel Ave, 35217	33 35 01	86 45 37	68	09/12/12	10:20 AM
195	6.43	4764 Inglenook Ln, 35217	33 34 07	86 45 54	30	09/12/12	10:05 AM
261	4.03	1825 Carson Rd, 35217	33 32 07	86 47 24	2.6	09/12/12	12:10 PM
261	6.72	2028 Hickory Ln, 35068	33 36 54	86 49 08	2	09/12/12	02:50 PM
261	9.84	3525 Shady Grove Rd, 35068	33 36 37	86 51 07	.24	09/12/12	03:00 PM
299	3.32	New Castle Rd, ≈ .16 mi W	33 38 19	86 46 43	5	09/12/12	11:59 AM
		of Cypress Street					
299	6.64	102 Gardendale Dr, 35071	33 39 12	86 48 36	1	09/11/12	02:30 PM
299	9.40	5391 Brewer Rd, 35071	33 39 56	86 50 09	.42	09/11/12	02:22 PM
336	2.21	1324 Carson Rd, 35217	33 38 33	86 45 24	4.8	09/12/12	01:31 PM
336	3.60	4268 New Castle Rd, 35071	33 39 15	86 45 46	4.5	09/12/12	10:50 AM
336	14.5	8211 Miller PI, 35116	33 44 35	86 48 40	.02	09/11/12	02:05 PM

We conclude from the above that the night pattern for WXJC AM continues to satisfy the Rules and Regulations regarding a modeled directional antenna array.

Prepared by the Chief Engineer, Stephen M. Poole 09-17-12